Application of Raman and photoluminescence spectroscopy for identification of uranium minerals in the environment

Eric Faulques, Florian Massuyeau, Nataliya Kalashnyk and Dale L. Perry

Introduction

Of all the elements in the Periodic Table, perhaps none is more complex than uranium.1–3 Because of its four oxidation states (+3, 4, 5 and 6) and the large sizes of its ions, uranium forms compounds and complexes that exhibit large coordination numbers, the number of atoms attached to the central uranium ion. Structurally documented uranium compounds offer many opportunities for study, since they exhibit exact bond angles, distances and crystal lattice details, allowing for theoretical studies involving electron density, electronic transitions and other calculations; some uranium compounds shown as minerals can be seen in Figure 1. These details also provide substantive bonding data for the development of more advanced studies of applied spectroscopy for analytical applications. The new detection approaches include the determination of ultra-trace levels of uranium by newly developed techniques, several using lasers.

Uranium-based minerals afford especially excellent materials for a rigorous look at uranium and its chemistry and transport in the environment. Uranium minerals exhibit themselves as solid-state structures.

Figure 1. Representative uranium minerals and their structures. (Top panel) yellowish-green saleeite Mg(UO₂)₂(PO₄)₂•10H₂O and (bottom panel) green metatorbernite Cu(UO₂)₂(PO₄)₂•8H₂O. Legend: U (blue), O (red), P (violet), Cu (orange), Mg (green) and H (white). The saleeite photograph is reproduced by permission of Jolyon Ralph, C.J. Stefano and www.mindat.org.
phases that possess crystal structures combining uranium with other elements such as lead, calcium, vanadium, titanium, copper, rare earth elements and aluminium, along with chemical functional groups such as phosphates, carbonates and silicates. They offer an array of analytically interfering elements and ions for the development of analytical techniques for looking at uranium under real environmental circumstances (rocks, soils, sands etc.), including the possibility of combined, multiple uranium mineral phases. An additional factor to realise is that these uranium solid phases—along with accompanying anions—control the amounts of uranium that undergo dissolution and undergo groundwater transport.

Raman scattering spectra

Raman scattering has extensively been used to study uranium compounds, both as laboratory molecular entities and as minerals. Uranium compounds and minerals studied by Raman spectroscopy range from simple oxides to more complex species such as minerals that are discussed here. Many of the more complex uranium minerals contain the polyatomic core cation, the dioxoauranium(VI), or uranyl ion. Other atoms (oxygen, sulfur, nitrogen etc.) and polyatomic anions (carbonates, phosphates etc.) are attached, or coordinated, to the central cation in complex structures found in minerals. Uranium minerals exhibit a large range of polyhedron geometries, bond-oxidation state parameters and polymerisation of polyhedra as part of their structures. All of the atoms in the molecule comprising the mineral structural lattice have, at some level, an impact on the Raman scattering spectra of the minerals.

While in theory, the uranyl ion (UO$_2$$^+$) is linear with symmetry D_{nh}, in fact, it is shown in the analysed mineral compounds studied here to exhibit a slightly bent (usually a few degrees less than 180°) C_{3v} symmetry, assuming equal bond lengths, the same as the V-shaped water molecule. The representation of vibrations for the isolated bent uranyl ion in these minerals is $\Gamma_{\text{vb}} = 2A_1 + B_1$; therefore, all modes are active in the infrared (IR) and Raman spectra. The A_1 modes represent the U–O symmetric stretching and the O–U–O bending vibrations with frequencies ν_1 and ν_3, respectively, and the B_1 mode the antisymmetric U–O stretching vibration with frequency ν_2.

The ideally isolated PO$_4$$^-$ ion has a tetrahedral structure with point group symmetry T_d. The vibrations of this ion are represented by $\Gamma_{\text{vb}} = A_1 + E + 2T_2$, and all these modes are Raman active, while only the T_2 modes are IR active in the free state. The symmetric and antisymmetric P–O stretching modes A_1 and T_2 occur at frequencies ν_1 and ν_3, respectively. The bending and deformation modes E and T_2 occur at frequencies ν_2 and ν_4, respectively.

Note that the above assignments for the two isolated ions do not take into account the lattice environment in the minerals, the U–O and P–O bond length differences and the ion-site symmetry specific to each crystal. The latter can cause activation of vibrations in the infrared (IR) and splitting of doubly or triply degenerate modes. Nevertheless, this simplification helps in the recognition of the uranyl minerals.

Figure 2 shows typical Raman spectra recorded with the Kr$^+$ laser excitation line at 647.1nm for several uranyl phosphate minerals between 600 cm$^{-1}$ and 1200 cm$^{-1}$ in which the Raman bands can be used as markers to identify the mineral phases. Two distinctive sets of intense lines appear in the spectra, one around 800 cm$^{-1}$ (A) and another one (C) grouped around ~1000 cm$^{-1}$, 1020–1050 cm$^{-1}$ and 1100 cm$^{-1}$ (weak). Another very weak intensity region labelled B occurs around 900 cm$^{-1}$. These three band sets represent composite Raman frequencies of the pseudo-linear UO$_2$$^+$ central cations and the phosphate (PO$_4$$^-$) anions in the mineral structures. They can be assigned to the symmetric (ν_3) U–O stretching (A-system of lines, between 813 cm$^{-1}$ and 838 cm$^{-1}$) and to both symmetric and antisymmetric stretching vibrations (ν_1 and ν_3, respectively) of the P–O bonds (C-system of lines between 980 cm$^{-1}$ and 1100 cm$^{-1}$). The antisymmetric U–O stretching ν_1 of the uranyl ion should appear at higher wavenumber than the symmetric one. In Raman scattering, the ν_1 (U–O) mode has a weak intensity and is only observed for

Figure 2. (Left panel) micro-Raman spectra of several uranium phosphate minerals. (Right panel) atomic motions associated with the vibrations of the uranyl and phosphate ions. The U atom is six-coordinate in the structures. Here, we have represented motions of non-equatorial (eq) O atoms (Ot), but it is expected that the Raman system A can be assigned to both U–Oeq and U–Ot vibrations. The minerals noted in the figure are metatorbernite [(Cu(UO$_2$PO$_4$)$_2$•8H$_2$O], uranocircite [Ba(UO$_2$)$_2$(PO$_4$)$_3$•10\cdot12H$_2$O], saleeite [Mg(UO$_2$PO$_4$)$_3$•10\cdot10H$_2$O], ulrichite [CaCu(UO$_2$)(PO$_4$)$_3$•4H$_2$O] and phosphuranylite [KCa(H$_2$O)$_9$(UO$_2$)(PO$_4$)$_2$•8H$_2$O]. Spectra were acquired under a microscope with 100× objective magnification. The spot analysed is ≤2μm, and the laser power on it is ≤0.5mW.
uranocircite and metatorbernite at about 900 cm\(^{-1}\) (B-system of lines). The line at 1100 cm\(^{-1}\) is also very weak, and it can be assigned to the antisymmetric P–O stretching mode \(v_n\). The relative positions in the A and C systems (characteristic of \(v_n\), for \(\text{UO}_2^{2+}\) and \(v_1\), \(v_2\), for \(\text{PO}_4^{3-}\)) vary considerably with the coordination sphere details of the uranyl cation. The multiple line intensities and their ratios to one another also change as a function of the different bonding structures and geometries exhibited in the crystal lattices.

The Raman lines of metatorbernite are completely confirmed by previous Raman studies on natural and synthetic metatorbernite undertaken with laser excitation lines at 633 nm and 532 nm, respectively.\(^{10,11}\) In the latter reference, the authors reported Raman peaks at 805 cm\(^{-1}\) (shoulder), 823 cm\(^{-1}\), 854 cm\(^{-1}\), 988–1000 cm\(^{-1}\) and 1111 cm\(^{-1}\) for this mineral (appearing at 807 cm\(^{-1}\), 824 cm\(^{-1}\), 973 cm\(^{-1}\), 997 cm\(^{-1}\) and 1113 cm\(^{-1}\) in that reference). The Raman spectrum of Sample I matches very well the Raman lines we find at 805 cm\(^{-1}\) (shoulder), 823 cm\(^{-1}\), 854 cm\(^{-1}\), 988–1000 cm\(^{-1}\) and 1111 cm\(^{-1}\) for this mineral (appearing at 807 cm\(^{-1}\), 824 cm\(^{-1}\), 973 cm\(^{-1}\), 997 cm\(^{-1}\) and 1113 cm\(^{-1}\) in that reference). The Raman spectrum of Sample II shows a richer number of lines (among them, the lines of interest for this study occur at 818 cm\(^{-1}\), 823 cm\(^{-1}\), 857 cm\(^{-1}\), 995 cm\(^{-1}\) and 1111 cm\(^{-1}\)), but the resemblance to our spectrum is unequivocal.

Finally, the Raman spectra of urlichite and saleeite have also been compiled in the RRUFF database for laser excitation lines. The RRUFF database gives Raman spectra of two 780 nm excited samples of meta-uranocircite, which has the same approximate chemical composition as uranocircite. The RRUFF spectrum of Sample I matches very well the Raman lines we find at 805 cm\(^{-1}\) (shoulder), 823 cm\(^{-1}\), 854 cm\(^{-1}\), 988–1000 cm\(^{-1}\) and 1111 cm\(^{-1}\) for this mineral (appearing at 807 cm\(^{-1}\), 824 cm\(^{-1}\), 973 cm\(^{-1}\), 997 cm\(^{-1}\) and 1113 cm\(^{-1}\) in that reference). The Raman spectrum of Sample II shows a richer number of lines (among them, the lines of interest for this study occur at 818 cm\(^{-1}\), 823 cm\(^{-1}\), 857 cm\(^{-1}\), 995 cm\(^{-1}\) and 1111 cm\(^{-1}\)), but the resemblance to our spectrum is unequivocal. Due to the very intense signal of the 805 cm\(^{-1}\) line, the A–C sets of lines are nearly identical, relative intensities. For saleeite the A–C sets of lines are nearly identical, positioned at 838 cm\(^{-1}\), 992 cm\(^{-1}\) and 998 cm\(^{-1}\) in Figure 2, and at 836 cm\(^{-1}\), 913 cm\(^{-1}\) and 990 cm\(^{-1}\) in the RRUFF spectrum. These data also perfectly agree with another spectrum published for an excitation at 633 nm.\(^{10}\) In general, the Raman scattering observed in the same uranyl phosphate mineralogical samples reported by different authors coincide very well in frequency and in relative intensity. On that account, it is remarkable that almost the same Raman signals can be found for each of these mineral species from different locations using different instrumentation and laser excitation lines.

As a result, our case study of micro-Raman spectroscopy applied to these five uranyl minerals demonstrates the reliability of micro-Raman spectroscopy which is able to identify complex, unique uranyl mineral phases with very similar chemical formulae (in the case of the present discussion, uranyl phosphate hydrates) but different crystallographic structures and lattices. Due to the very intense signal of the A-system in the spectra for all samples investigated, this technique is therefore suitable for precise tracking of uranyl mieties in contaminated soil, solid-state materials or even biological samples. Although this unambiguous Raman signature in the solid state does not require any further analytical techniques such as X-ray diffraction, in the next section, we present another spectroscopic probe which might be efficiently used for recognising uranyl phosphate and other anion-containing uranyl minerals.

Photoluminescence spectra

Photoluminescence (PL) spectroscopy can be run in many cases on Raman spectrometers with adapted laser excitations. This is a non-destructive method to explore the electronic structure of molecules and solids. In PL spectroscopy, monochromatic light is absorbed by the sample, a process referred to as photo-excitation, in which electrons...
are promoted to excited states by the excess energy brought to the system. The molecule or material dissipates this excess energy in its structure by electronic and geometric relaxation from the photo-excited states through decay by radiationless heat exchange and radiative re-combinations, producing emitted light called photoluminescence. The PL energy is the energy of the transition between the lowest excited state and the equilibrium state. PL spectroscopy covers wide, technical domains: measures of dopant and carrier concentration in silicon wafers, identification of defects in semiconductors, development of light emitting diodes and scintillators, biological tagging, super-resolved fluorescence microscopy of nano-objects, development of long lasting phosphors and other similar applications.

Uranium(VI), as found in the uranyl ion in the presently discussed minerals, possesses extraordinary photo luminescence properties with relatively long lifetimes ranging from several to hundreds of microseconds depending on its chemistry. In this respect, the emission characteristics of the uranyl cation are particularly attractive, owing to its broad distribution in geological and biological environments. Upon ultraviolet or blue light excitation, the emission of uranyl is imputable to an electronic transition from the lowest triplet state to the singlet ground state. This typifies strong fluorescence occurring in the green–yellow range of the visible spectrum, which exhibits, in most cases, a typical vibronic structure with energy gaps between the peaks from about 810 cm⁻¹ to 830 cm⁻¹ ± 10 cm⁻¹ (–0.1 eV) corresponding to the symmetric stretching vibration of the uranyl ion in the different crystals. The vibronic structure is well developed at room temperature (RT) in four of the five minerals investigated in this study (see Figure 3). It is worth noticing that the peak energies of the fine structure vary with the mineral species, therefore providing a strong fingerprint for their identification in their native state. The most intense peak occurs at 519.5 nm (19249 cm⁻¹), 521.3 nm (19183 cm⁻¹), 525.6 nm (19026 cm⁻¹), 526.9 nm (18979 cm⁻¹) and 535.7 nm (18667 cm⁻¹) for saleite, ulrichite, metatorbernite, uranocircite and phosphuranylite, respectively. Phosphuranylite presents a feature-less broad luminescence band at RT, which is also a signature of this species among the natural uranyl minerals analysed here.

The minerals differ in this spectroscopic experiment by their emission intensity and can be sorted by decreasing PL-intensity order as: uranocircite, metatorbernite, saleite, ulrichite, phosphuranylite. Ulrichite is not a very strong emitter and in phosphuranylite, the PL is relatively strongly quenched with respect to the three other compounds.

Photoluminescence studies of the uranyl ion are extremely useful for investigating the chemical state of bonding of the ion in minerals, along with other studies of the role of both the uranyl ion and other uranium species in the environment. These include deactivation processes of uranium excited states in complexes that may occur from the uranium mineral dissolution, complexes of uranium in multiple oxidation states, investigation of uranium luminescence in a variety of solid state matrices, and quenching mechanisms and the role of possible intermediate uranium(V) species that can evolve from the uranyl ion in both solid state and liquid reactions.

In summary, the two methods described here, Raman scattering and photoluminescence spectroscopy, are supplemental to each other when applied to uranium(VI) compounds that comprise uranium(VI) minerals. They yield mainly the vibrational and electronic energies, respectively, of the uranyl cation present in the minerals. Because the crystallographic structures are different from one mineral to another, one observes variations in the laser-induced spectra which are characteristic of the studied species. Laser-induced spectroscopy provides, therefore, powerful tools for direct speciation of uranium and identification of natural uranyl minerals relevant to the environment such as phosphate hydrates.

Acknowledgements
This work was partially supported by the US Department of Energy under Contract No. DE-AC03-76SF00098.

References

continued on page 25
Sub-sample
Correctly mass-reduced part of sample (primary, secondary...). A sub-sample is a result from a dissociative (disaggregation) process; a composite sample is a result from an integrative process.

Fragment
Fragment refers to the smallest separable unit of the material that is not affected by the sampling process itself (e.g. particles, grains etc.). By naming the smallest unit-of-interest a fragment, TOS is also able to treat the situation in which the sampling process results in fragmentation of some of the original units.

Group
A number of spatially correlated fragments, which act as a coherent unit (increment) during sampling operations. In practical sampling, the only group of interest is the actual increment being extracted, i.e. the material in the sampling tool. The group size depends on the sampling tool (mass/volume) and the sampling process as well as how the tool is implemented and operated.

Scale
The principles described by TOS are scale-invariant, i.e. the same principles apply to all relevant scales and stages in the sampling pathway (lot, sample, sub-sample).

Zero-dimensional lot (0-D lot)
The 0-D lot is characterised by displaying no internal correlations between all potential increments, thus opening up for relatively easy practical sampling. A 0-D lot can be manipulated—at least in principle—for example, by mixing or direct in toto splitting, the work necessary may vary significantly as a function of the lot mass, M_l, but also by other relevant features, e.g. stickiness, irregular fragment forms. For a full set of necessary and sufficient definitions, referral is made to the horizontal sampling standard DS 3077 (2013).4

Notes and references
1. Currently there is a debate on “Alternatives to Gy’s Sampling Theory” on LinkedIn. This is a good example of the critical need for precise speaking. We shall return to this discussion in these columns but, significantly, after all the necessary basic concepts, definitions and principles have been properly introduced.
2. The special case of a zero-dimensional lot refers to a lot that can be effectively, mixed, moved and sampled throughout with complete correctness. Usually these are small lots, which can be easily manipulated. A full definition of the 0-D lot is given in the definition section of this sampling column.
3. Uniform materials: Materials with a repeated (correct) sampling reproducibility lower than 2%. Such materials do not occur naturally (exception gases and infinitely diluted solutions etc.).

References continued from page 17

www.spectroscopyeurope.com