Search Keyword: Total 147 results found.
Tag: X-ray spectrometry Ordering

Rigaku’s ZSX Primus IV is a tube-above, wavelength dispersive X-ray fluorscence spectrometer with improved functionality and performance.

Rigaku has published a new application report describing the analysis of low-alloy steel using a benchtop wavelength dispersive X-ray fluorescence (WDXRF) spectrometer.

Spectro have published a white paper explaining why overcoming matrix effects associated with X-ray fluorescence (XRF) analysis is critical to achieving consistent high-accuracy results..

Spectro Analytical Instruments have introduced a new line of Spectro Xepos spectrometers with improved sensitivity.

Andor Technology has introduced the new iKon-XL “open-front” (‘SO’) 16-Megapixel CCD camera platform for vacuum ultraviolet (VUV) and soft X-ray direct detection. 

An international group of scientists from Poland, Austria and the UK have used X-ray fluorescence (XRF) spectroscopy at the UK’s Diamond Light Source to advance our understanding of the changes taking place during the progression of brain cancer. This research may lead the way to a new tumour assessment method which could complement traditional approaches.

Raman, FT-IR and ED XRF discover interesting detail of the dying in the 19th century, and maybe about trade links between Europe and Australia.

Rigaku Corporation has announced the next generation NanoHunter II benchtop total reflection X-ray fluorescence (TXRF) spectrometer

The xrFuse range of electric fusion machines from XRF Scientific is available as six-position high-volume and two-position compact models.

A new technique combines electron microscopy and synchrotron x-rays at Brookhaven Lab to track chemical reactions under real operating conditions.


FAST SDD with Moisture Resistant Windows

Amptek’s line of silicon drift detectors is now available for use for energy dispersive spectroscopy (EDS) within scanning electron microscopes (SEMs). With the “C Series” silicon nitride X-ray windows, the low-energy response extends down to boron. SEM-EDS is an ideal application for these detectors because the electrons have a short range in the sample and they excite the X-rays very close to the surface, yielding many X-rays from all the elements down to carbon, benefitting from the high efficiency of these windows at low energies.


S2 Puma

Bench-top ED XRF spectrometer suitable for industrial applications, where the 20-position sample tray or automation interface to a conveyor belt will be valuable, or as a flexible tool for the academic and research environment, since it can accept a wide range of sample types, shapes and sizes. The measurement spot can be changed from a couple of centimetres to a few millimetres, and a video camera aids exact sample positioning.

D8 Endeavor

Process XRD system for analysis of polycrystalline material that succeeds the D4 Endeavor. 1-dimensional detector technology enables short measurement times whilst maintaining sensitivity for the detection of crystallographic phases with low concentrations. Conveyor belt or external robot interface are available for automated sample loading, and measurement can continue whilst single samples or sample trays are loaded manually.


JSX-1000S ElementEye

ED XRF spectrometer that enables high-sensitivity analyses to be performed across the entire energy range using a maximum of nine types of filters and a sample chamber vacuum unit. It has a 12-position auto sample changer, touch screen operation, pre-recorded recipes for standard solution applications (RoHS, metals, oxides, organic materials), a high sensitivity SDD and short-path optical system for high throughput, and residual balance and thickness correction for organic samples.

Navas Instruments

AFS-5000 Series

Fusion system for making beads for XRF analysis that incorporates a loss-on-ignition (LOI) analyser. An external balance weighs the crucible, sample and flux, and an internal balance below the furnace that is used for LOI calculations. This simplifies the bead making process and makes it less dependent on the individual operator. Versions are available to handle form two to eight beads, and expansion is easily.



X-ray fluorescence spectrometer that has both wavelength dispersive and energy dispersive cores integrated by SumXcore technology in one instrument, which can also include a small spot analysis tool for fast element distribution mapping and the THETA free lime channel for dedicated cement applications. Measuring ED and WD simultaneously cuts the experimental time in half. A series of dedicated Zetium editions are available: cement, polymers, petro, metals and minerals, as well as an “Ultimate” edition. Each is available with a choice of four enhanced performance packages for improved speed and throughput, performance enhancement, robustness and uptime, and flexibility.


New detector for X-ray diffraction with resolution comparable to the PIXcel3D and with pixel dimensions of 60 × 60 µm and overall sensor dimension of 30.7 × 24.8 mm. The CdTe sensor provides high stopping power for X-rays, improving the detector efficiency for all laboratory wavelengths, and enabling close to 100% efficiency for higher radiation such as Ag and Mo.


NEX QC Quant EZ Series

Low-cost, high-resolution bench-top ED XRF analysers designed for heavy industrial use. QuantEZ analytical software runs on either a laptop or benchtop PC and offers all the functions required for calibration and routine maintenance. The NEX QC QuantEZ version is optimised for routine QC and the NEX QC+ QuantEZ version for more demanding applications where analysis time and sample throughput are important. The QC+ uses silicon drift detector technology.

Yvonne Fors, Håkan Grudd, Anders Rindby and Lennart Bornmalm tell us about “X-ray fluorescence for cultural heritage: scanning biochemical fingerprints in archaeological shipwrecks”. Two outstanding examples of the preservation of wood are the warships Vasa, in Stockholm and the Mary Rose in Portsmouth and this article looks at the role XRF has played in the preservation of the wood of both ships.

Rigaku has released the Rigaku SmartSite RS portable stress analyser, designed for on-site analysis.

Another area of application of XRF, “Determination of elemental distribution or heterogeneity by X-ray fluorescence”, is considered by Christopher Shaffer and Didier Bonvin. The ability of modern X-ray spectrometers to perform small spot analysis as well as mapping has opened up new applications in non-homogeneous samples. The authors show applications in metals, precious alloys as well as rocks.

Knowledge about the particles in the air is important because of their effect on our health and their impact on our climate through cloud formation and transport of nutrients into the oceans. Ursula Fittschen describes “Strategies for ambient aerosols characterisation using synchrotron X-ray fluorescence: a review”. This technique can provide elemental determination and speciation of aerosol particulates with limits of detection in the pg m–3 range for many elements.

Both the size and chemical composition of airborne particles have an effect on human health. Whilst the effects of size have been much studied,  many of the toxic chemicals in particles are at very low concentration and have been less studied. Monitoring their composition and concentration over time helps to determine their source. Synchrotron radiation-induced XRF spectrometry proves to be a good tool for this purpose.

How a cat manages to turn and land on its feet may not be the most obvious start to an article in Spectroscopy Europe. However, C.J. Milne and M. Chergui use the example in their article on “Time-resolved X-ray absorption spectroscopy” to show how the time dimension is important in many analyses and applications. There has been a real surge in time-resolved X-ray absorption ­studies in chemistry, biology and materials science. Picosecond time resolution is routinely achieved and femtosecond resolution has been demonstrated at synchrotrons, albeit at the cost of a significantly reduced photon flux. However, the advent of hard X-ray-free electron lasers offer the promise of making such studies routine.

Even though lead in fuel has been banned for a number of years, it is still present in by the roadside, as are many other pollutants from vehicles. The combination of Raman spectroscopy and µ-ED-XRF is of particular value. The advantage Raman has is in the possibility of focusing on individual grains, thereby obtaining the spectrum of each grain that comes from traffic-emitted particles.

The study of dust particles in our atmosphere is important since they can act as a suppresor of global warming. The analysis of historical levels of dust in the atmosphere through ice cores is vital in this work. Synchrotron-radiation spectroscopic techniques such as TXRF and XANES can be used to analyse extremely small amounts of dust.

Whilst fireworks are a great entertainment, they can also be used for illegal activities as well as potentially containing dangerous chemicals. The combination of Raman spectroscopy and SEM-EDS turns out to be a very efficient analytical method. In fact, these complementary techniques may also be used to analyse other kinds of pyrotechnic artefacts, low explosive formulations, high explosives, explosion residues etc.