Search Keyword: Total 233 results found.
Tag: Raman Ordering

Biomedical engineers are developing a hand-held device called a SpectroPen that could help surgeons see the edges of tumours in human patients in real time during surgery. Statistics indicate that complete removal, or resection, is the single most important predictor of patient survival for most solid tumours.

Thermo Fisher Scientific has announced the availability of two new DXR Nanocarbon Analysis Packages for the characterisation and micro­-characterisation of carbon nanomaterials. Both packages offer large-scale chemical and materials producers complete systems for carbon nanotube analysis. Incorporating their DXR Raman platform, the packages provide information on the molecular structure and morphology of carbon nanomaterials. Designed to simplify the Raman technique for non-specialist instrument users, the packages improve productivity and provide accurate, rapid and reproducible results.

Thermo Fisher Scientific
Issue: 22-05
RSN: 117

Tags: Raman

Photon etc. has introduced a turn-key resonant Raman spectroscopy system, which uses a tuneable notch filter able to block elastic scattering on a large wavelength range while maintaining high throughput. Coupled to a tuneable laser, spectrograph and EMCCD camera, the system is ideal for studying vibrational optical and electronic properties of materials in a non-destructive manner, analysing carotenoids, pigments and dyes in art, archaeology and forensics, characterising the diameter and chirality distribution of a mixed population of carbon nanotubes and for monitoring in situ carbon nanotube properties during growth to achieve better control in their production.

Photon ETC
Issue: 22-05
RSN: 118

Tags: Raman

We are pleased to introduce a new feature in Spectroscopy Europe: a Product Focus. This first Product Focus is on Raman Spectroscopy, and a number of companies have provided information on their key products, their applications and features.

Tags: Raman

Information on the detailed chemical composition, structure and ­morphology of environmental particles, and ­especially airborne particulate matter (PM), ­facilitate the understanding of their reactivity, sources, transport and changes of chemical species and, hence, prediction of their likely impact on the ­environment and human and animal health. The analysis techniques for environmental particles can broadly be divided into two groups: bulk (for example, water-soluble ionic content by means of ion ­chromatography for PM, ­elemental concentrations by means of X-ray ­fluorescence spectro­metry for all ­environmental particles, chemical structural information by means of X-ray diffraction for larger ­environmental ­particles, such as sediments and sands etc.) and micro-­analytical techniques, whereby the character of any single particle can be probed.

In two studies published today in the journal Drug Testing and Analysis, UK and Swiss research teams reveal two techniques proven to identify dissolved cocaine in bottles of wine or rum. These tools will allow customs officials to quickly identify bottles being used to smuggle cocaine, without the need to open or disturb the container.

Research that made it to the cover of Analytical Chemistry has shown that a detection method developed by researchers at the University of Twente’s research institutes MESA+ and MIRA is even more sensitive than demonstrated earlier.

Tags: Raman

Spectroscopy is the measurement of the interaction of radiation with matter before or after spectral dispersion. This has been studied variously by physicists and chemists, has wide applications outside these traditional disciplines and cannot be owned by any particular community. The subject embraces both science (including mathematics) and technology (including computing) and contains many examples of differences, not always understood, between these cultures. It illustrates the unchanging and universal character of the relevant science, which is increasingly revealed by advances in the relevant technology.

Raman spectroscopy has been used to show that graphene has the potential to replace carbon fibres in high performance materials that are used to build aircraft. Graphene—discovered in 2004 by physicists Professor Andre Geim and Dr Kostya Novoselov at The University of Manchester—is a two-dimensional layer of carbon atoms that resembles chicken wire.

Tags: Raman

The problem of detecting, recognising and identifying explosives at significant standoff distances has proved one of the most difficult—and most important—challenges during recent years, being today, one of the most demanding applications of spectroscopic techniques. The limited number of sophisticated available techniques potentially capable of standoff detection of minimal amounts of explosives is based on laser spectroscopy. Of the recently developed techniques, Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) are considered significant for their potential for homeland defence applications.


Here, we focus on new trends in Raman spectroscopy to improve in vivo diagnosis. The use of Raman spectroscopy for real-time diagnosis of medical disease without the need for biopsy is among the most exciting and clinically relevant applications; four recent reports are presented. First, an approach to reduce fluorescent background of lung tissue in combination with a biomedical filtered Raman fibre optic probe was introduced in 2009 by Magee et al. Second, a fibre optic probe was developed for the CARS variant of Raman spectroscopy. Third, functional metal nanoparticles and carbon nanotubes were applied to a small animal model to collect Raman spectra non-invasively utilising the surface enhanced Raman scattering (SERS) effect. Finally, spatially offset Raman spectroscopy (SORS) has been presented as another non-invasive Raman-based method to probe deep bone subcutaneously in an animal model.


Symbion Systems has announced the release of its driver for Kaiser Optical Systems RamanRxn systems analysers.

Tags: Raman Software

WITec has introduced a line extension of the alpha300 microscope series. Building on the system's inherent modularity, several new microscope versions have been added in order to meet all diverse and multi-faceted customer requirements.

The inability to have children can cause great heartache for many couples, with infertility affecting at least one-in-six couples in Britain and one-in-eight in the United States. The most common cause is male infertility, usually characterised by sperm with little or no mobility. One treatment commonly used in these cases is in vitro fertilisation (IVF). This involves injecting sperm into the egg in a laboratory.

Tags: Raman

Scientists from Ruhr-Universität Bochum have used Raman micro-spectroscopy to distinguish, within seconds, healthy fertile and infertile sperm cells. The method has the potential for a novel fertility technology and a test scheme which does not only rely on morphological characteristics, but also utilises chemical signatures.

The location of metal complexes within living cancer cells has been accurately determined using Raman microscopy. The researchers have thus gained new insights into the mechanism of action of metal-containing drugs, to which they ascribe great potential capacities, e.g. in the treatment of cancer. These findings are of fundamental significance and are thus featured as a VIP (very important paper) in the current edition of Angewandte Chemie.

Patrik Johanssona and A.M.C. DaviesbaApplied Physics, Chalmers University of Technology, SE-41296 Göteborg, SwedenbNorwich Near Infrared Consultancy, 75 Intwood Road, Cringleford, Norwich NR4 6AA, UK. E-mail:


In last year’s August/September issue of Spectroscopy Europe1 I wrote a column about my “discovery” of computational chemistry and asked if anyone was interested. A satisfying number of readers answered the on-line survey with very positive comments but none more so than Patrik Johansson who e-mailed me about his delight with the column and to assure me that there was “indeed a bunch of scientists out there that do work on IR (and Raman) using both experimental and computational techniques—I am one of them”! This column is the first result of the ensuing e-mail conversation and is due to Patrik. I remain excited by the possibilities of computational chemistry particularly as Patrik thinks that an approach to NIR spectroscopy is indeed possible.Tony Davies

Jean-Philippe Echarda and Loïc BertrandbaLaboratoire de recherche et de restauration, Musée de la musique, Cité de la musique, 221 avenue Jean Jaurès, 75019 Paris, France. E-mail: jpechard@cite-musique.frbIPANEMA, synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette cedex, France


For the past two centuries, the nature of the varnishes coating historical instruments has been a much debated subject. Focusing in particular on the varnishes used for coating violins made by the Italian instrument-maker Antonio Stradivari, numerous hypotheses have been raised by instrument-makers, experts, musicians and chemists, without reaching a general understanding of the ancient varnishing techniques. A few years ago, we decided to work on this topic using several complementary approaches for materials characterisation and study of historical sources (ancient varnish recipes, etc.).

ChemImage will present the results of an ingredient-specific particle sizing (ISPST) study on a combination metered dose inhaler product at Respiratory Drug Delivery (RDD) 2010 ( This conference takes place from 25 to 29 April in Orlando, Florida, USA, and covers current biological and pharmaceutical issues related to nasal and respiratory drug delivery.

Tags: Raman Imaging

Using a novel hybrid sensor system, based on Shamrock spectrometers and high performance intensified CCD detectors supplied by Andor Technology, Spanish scientists have been able to use both Raman and Laser-Induced Breakdown Spectroscopy (LIBS) simultaneously for the instant, remote standoff analysis of explosive materials.